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Abstract—Livingstone is a discrete, propositional logic-
based inference engine that has been used for diagnosis of 
physical systems. We present a component-based model of 
a Main Propulsion System (MPS) and say how it is used 
with Livingstone (L2) in order to implement a diagnostic 
system for integrated vehicle health management (IVHM) 
for the Propulsion IVHM Technology Experiment (PITEX).  
 
We start by discussing the process of conceptualizing such a 
model. We describe graphical tools that facilitated the 
generation of the model. The model is composed of 
components (which may map onto physical components), 
connections between components and constraints. A 
component is specified by variables, with a set of discrete, 
qualitative values for each variable in its local nominal and 
failure modes. For each mode, the model specifies the 
component’s behavior and transitions. We describe the 
MPS components’ nominal and fault modes and associated 
Livingstone variables and data structures. 
 
Given this model, and observed external commands and 
observations from the system, Livingstone tracks the state 
of the MPS over discrete time-steps by choosing trajectories 
that are consistent with observations. We briefly discuss 
how the compiled model fits into the overall PITEX 
architecture. Finally we summarize our modeling 
experience, discuss advantages and disadvantages of our 
approach, and suggest enhancements to the modeling 
process.  
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 1. INTRODUCTION 
Model-based diagnosis (MBD) is the task of identifying 
faults in a physical system given a model of and 
observations from that system. The model consists of 
components and connections. The model is used to test 
assumptions about the state of a component. The 
assumption is “tried out” in the model – that is, the 
observations from the system are compared with values 
expected (predicted) by the model. When they match, the 
assumptions are accepted as accurate representations of the 
system’s state. 
 
Model-based tools, in general, are more flexible than rule-
based tools. In fact, the same model may be used in one of 
three ways: simulation, diagnosis or recovery. In simulation, 
the commands and state of a system are given, and the 
model is used to predict the observations (sensor readings) 
from the system. In diagnosis, the commands and the 
observations are given, and the model is used to find the 
possible system states. Finally, in recovery, the observations 
and the current state are known (assumed), and the model is 
used to find a series of commands that will place the system 
into a desired state. 
 
In MBD, there is often a distinction between the actual 
model and the diagnostic engine–the program that carries 
out the reasoning or inferencing. Livingstone is a 
qualitative, discrete, consistency-based reasoner that has 
been developed at NASA’s Ames Research Center (ARC). 
As a model-based tool it can also be used for simulation and 
recovery. 
 
The original version of Livingstone [1] was Lisp-based. The 
current, C++, version of Livingstone, called L2, can track 
multiple trajectories of the system over time [2]. Over the 
years, Livingstone has been a part of several diagnosis 
efforts: 
• Deep Space 1 – it was used for mode identification, and 

mode recovery, during an onboard experiment, called 
the Remote Agent Experiment, in May 1999 [3] 

• In-Situ Resource Utilization (ISRU) – Kennedy Space 
Center explored using Livingstone to confirm that 



 2

commands are executed and to diagnose faults in the 
ISRU. 

• Advanced Life Support System – JSC has worked on 
integrating Livingstone with the control system of the 
Life Support project. 

• X-37 – L2 was slated to fly as an onboard experiment 
[4] to monitor electro-mechanical actuators for control 
surfaces and electrical power system (though the X-37 
program is currently under review). 

• International Space Station -- ARC is researching 
issues in modeling hardware and software elements for 
some ISS subsystems, such as Command and Data 
Handling, and in using the model to assist ground 
operators with fault analysis. 

 
This paper describes a component-based, discrete system 
model of a propellant storage, conditioning and feed system 
on a spacecraft such as the X-34 Reusable Launch Vehicle 
(RLV) [5]. This model is one part of an integrated 
architecture for diagnosis [7], developed by the PITEX 
team, comprising researchers at NASA’s Glenn Research 
Center (GRC), Ames Research Center (ARC) and Kennedy 
Space Center (KSC). From a model consideration, two other 
key parts are the monitors and the Real Time Interface 
(RTI). The monitors take observations and map them into 
discrete values used in the model. The RTI sends these 
values to the Livingstone inference engine and decides 
when to request a diagnosis from Livingstone. It is not 
required that all observations be known, since Livingstone 
uses consistency-based reasoning. Secondly, by using a 
discrete representation, instead of a continuous one, 
Livingstone reduces the state space that must be stored and 
searched. 
 
 2. MODELING APPROACH 
Before building a model there are several steps that the 
modeler has to consider. These are discussed in this section. 
 
Domain understanding 

Gaining an understanding of the physical system, or device, 
is the first step in the model generation process. For our 
modeling task it is sufficient to capture just the minimum 
amount of information about the system that will be needed 
for the specific purpose of diagnosis. Often knowledge of 
the physical system is available in varied formats such as 
schematics, nominal operations timeline and telemetry 
spreadsheets. A detailed discussion with the system 
designers, if they are available, is a key step in gaining a 
better understanding of the functionality of the system. 
 
Basic information for a modeler 

How do faults change the behavior of the device? In 
heuristic diagnosis there is a direct relation between the 
failure that occurs and its manifestation at observation 
points. In MBD, one models how failures change the local 
behavior of a part of the system (which is represented as a 

component in the model), and models the influences 
between parts. More details on such modeling issues are 
available in [6]. 
  
An essential part of diagnosis is making inferences based on 
observations. So some key considerations are what fault 
types are to be modeled and what observations are 
available. Observed signals usually have some noise 
associated with them, which affects accuracy. Observations 
also have varied ranges. Knowledge about these ranges can 
help determine the optimal level of abstraction required for 
the nominal and fault behaviors of the modeled 
components. In addition, the types of sensors, and the 
number and placement of sensors (whether redundant or 
not) determine what observations are available for system 
diagnosis. 
 
What makes an adequate model 

Diagnosability of a model is the issue of whether a 
particular diagnosis can be sufficiently distinguished from 
others, given the observables of the system. If a model 
satisfies this requirement for a particular, predetermined, set 
of fault scenarios it is an adequate model for that set of 
faults [6]. These are the faults that were taken into account 
during model generation. This does not imply that these are 
the only faults that can be diagnosed. For instance, there 
often is an  “unknown” failure mode for each component 
that acts as a catchall mode for other faults.  
 
Though only component faults are modeled, the key idea is 
that the diagnostic engine will be able to use these to detect 
many system-level faults, including multiple-component 
faults. The component faults have to be known a priori and 
often are available from Failure Modes and Effects Analysis 
(FMEA). Once these components are connected, the engine 
provides the ability to detect system-wide faults. 
 
Basic properties of a model 

Sometimes diagnosis is part of a larger task such as 
troubleshooting or preventive maintenance. When that is the 
case, an adequate model is one that assists a maintenance 
engineer in advising on the lowest-cost repair. That is, 
effective repairs are advised, no ineffective repairs are 
advised and the advice is provided in a timely manner.  
 
In turn, this expects that the diagnostic engine provides 
correct diagnoses, provides no incorrect diagnoses (that is, 
there are no “false alerts”) and does this in a timely manner. 
For the model this implies that the components (and 
connections) capture the nominal and faulty behavior of the 
system. A good model has states that are uniquely 
identifiable, has an optimal number (usually the smallest 
number) of components and connections and the cost of 
probing the system (number of sensors) is not too high. In 
practice, because most diagnosis modeling is done after a 
system has been designed, the modeler is simply given a 
system with a certain number of sensors. 
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Structure of a model 

A system model consists of components and connections. 
 
Components have terminals (inputs and outputs), modes 
(nominal mode, and one or more faulty modes including 
“unknown”) and specification of their observable behaviors 
(in the nominal and fault modes). Components represent 
parts of the system that contribute to the relevant behavior 
of the system -- for instance, parts that can fail and how 
they can fail and probability of that failure occurring.  
 
Connections represent influence of components on other 
components. The modeler’s thought process includes 
assessing how nominal and faulty behavior of two or more 
connected components can manifest at the visible (and 
modeled) observation points. When creating a connection 
between two components the modeler defines the 
constraints between them. In Livingstone, a constraint is a 
clause that represents permissible assignments to variables. 
 

 3. MPS MODEL 

For Livingstone a model is a data structure that represents 
the real-world device, the faults of which Livingstone 
diagnoses. To build a model of the MPS we can use a (Tcl-
based) graphical user interface called Stanley to create a 
schematic-like model on the Stanley “canvas”. Stanley then 
uses this to generate the model files that will be read by 
Livingstone.  Livingstone models can be stored in several 
different model file formats. A detailed description of these, 
and of other Livingstone terminology, is available at: 
http://ic.arc.nasa.gov/projects/mba/projects/L2/doc/index.html 
 
The Stanley model of the X-34 MPS is shown in Figure 1. It 
shows liquid oxygen (LOX) and rocket propellant (RP-1) 
subsystems, pressurization and pneumatic subsystems, and 
vent and feed lines. Detailed descriptions of the subsystems 
are in [5]. The designed flight profile of the X-34 had two 
phases during its captive carry stage: LOX conditioning and 
bleed phase. This stage was followed by the burn stage, 
where the rocket engine fired, and thereafter the flight 
ended with an autonomous landing. The PITEX model was 
scoped to diagnose the MPS during captive carry. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Model of the Main Propulsion System 
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 4. MODEL DATATYPES 
Livingstone variables can take on one of a discrete set of 
values. For example, a variable named “sign”, can take the 
values “negative”, “zero”, and “positive”. Often, a variable 
is defined to divide the (continuous) real-number line into 
the discrete values relevant to the diagnosis of a system. 
Variables can also be grouped into structures for modeling 
convenience.  However, Livingstone reasons about each 
variable individually regardless of the grouping. 
 
One variable type, called a threshold, has been defined for 
the MPS model, and has been used extensively throughout 
it. A threshold is a defined variable that can take on two 
values, “aboveThreshold” and “belowThreshold”. It divides 
the real-number line into two bins at a specified point. 
These thresholds can be on values for a sensor reading (e.g., 
170°R) or can be on the derivative of a sensor reading (e.g., 
0.04 psi/s).  
  
The threshold data type is used to create other data types for 
the MPS model. There is a structure called a range, which 
contains two threshold data types, an upperBound and a 
lowerBound. There are constraints defined between the 
thresholds that assert the upperBound is greater than the 
lowerBound. If, for a particular range, a monitor reports a 
reading that is above the lowerBound threshold and is 
below the upperBound threshold, then the value is within 
that range. Most of the model constraints are implemented 
on this level. 
 
Furthermore, the model contains structures built from 
multiple ranges. For example, the feedLineTemperature 
structure is composed of two ranges, loxTemp and 
ambientTemp. The order of the ranges is specified for each 
particular structure; however, note that they can overlap. 
This hierarchy of datatypes is illustrated in Figure 2. 

 
 5. COMPONENTS 
A Livingstone component contains a set of variables (which 
also includes a set of modes). The variables can be of any 
Livingstone datatype, as described above. The set of modes 
is the list of possible states for the component. Each mode 
contains constraints that will be active when the system is in 

that mode. Thus constraints are logical statements involving 
the variables defined within the mode. The types of 
allowable constraints include those commonly used in 
programming languages (e.g. equals, and, or, if). In general, 
a component relates its inputs to its outputs based on its 
current mode. For example, when a valve’s mode is open its 
output pressure will be equal to its input pressure. 
 
There are two types of modes, nominal modes and fault 
modes. In the current version of Livingstone, the modeled 
system can transfer between nominal modes only when 
given a command. The same system command can cause 
multiple components to change mode. 
 
Fault modes differ from nominal modes in two ways. First, 
a component can transition into any fault mode from any 
other mode, as long as the constraints in the fault mode are 
consistent with the current observations. Secondly, a fault 
mode has a probability associated with it. This probability 
indicates the likelihood of that particular fault mode, and is 
constant: the probability of a fault cannot depend on the 
current system mode. Livingstone translates the probability 
number into an order of magnitude comparison called a 
rank. A rank is defined to be the negative of the logarithm 
of the probability, rounded to the nearest integer. Hence, the 
ranks are positive integers starting from zero, and higher 
numbers indicate less likely faults. The ranks also are 
additive. If a candidate in a diagnosis contains two 
components in a failed state, one failure of rank 1 and one 
failure of rank 2, the overall rank of the candidate is 3. 
  
The nominal and fault modes of all modeled components 
are presented in Table 1. There are four subsystems in the 
MPS: 
 
• pressurization subsystem provides pressurized helium 

to the propellant tanks during the bleed and burn phases 
• pneumatics subsystem provides pressurized helium to 

open and close the pneumatic valves 
• Liquid Oxygen (LOX) subsystem has two tanks for 

storing liquid oxygen: a forward tank and an aft tank. 
All of the logic is implemented in the forward tank and 
the aft tank is simply a pass-through component. 

• Rocket Propellant (RP-1) subsystem has one RP-1 tank 
 
The model propagates simple constraints on observations to 
track the system state.  However, in the LOX or the RP-1 
tank, the amount of storage (tank level) by itself is not 
uniquely indicative of the component’s state. Moreover, 
there are not an adequate number of level sensors in the 
tank. Therefore, the time-derivative of the pressure sensor 
reading is used to indicate the state. 
 
Thus the state of the LOX tank is determined by the states 
(“open” or “closed”) of the three valves leading into and out 
of the tank, and is defined, in terms of pressure-rates, as 

 

aboveThreshold
belowThreshold upperBound

lowerBoundaboveThreshold
belowThreshold

Threshold values Ranges Datatypes

loxTemp

ambientTemp
feedLineTemperatur

feedLineTemperature.loxTemp.upperBound=belowThreshold

aboveThreshold
belowThreshold upperBound

lowerBoundaboveThreshold
belowThreshold

Threshold values Ranges Datatypes

loxTemp

ambientTemp
feedLineTemperatur

feedLineTemperature.loxTemp.upperBound=belowThreshold
 
                             Figure 2 Model datatypes 
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shown in Table 2. Similarly, the RP-1 tank model is shown 
in Table 3. 
 

 
 
 
 

Table 1.  Nominal and Failure Modes of Components of the Main Propulsion System 
 
Subsystem Component Nominal Mode Failure Mode Rank 

Helium tank (tk01) Output pressure > secondary regulator setpoint   
Enabling valve (sv01) When valvePosition=open, input=output 

When valvePosition=closed,  output=ambient 
  

Regulators (rg01, rg11) When Pin>=setpoint, output=setpoint 
When Pin<setpoint, output=input 

Regulating high 
Regulating low 
Unknown 

2 
2 
4 

Pressurization valves (sv02, sv03) When open and pressure >= primary setpoint, flow>0 
When closed, flow=0 

Stuck open 
Stuck closed 
Unknown 

3 
2 
5 

Microswitch (mmsw102x, 103x) PositionReading = sensedPosition Faulty 3 
Pressure sensors (mpre101p, 103p) PressureReading = sensedPressure Faulty 2 

Pressurization 

Temperature sensor (mrtd103t) TemperatureReading = sensedTemperature Faulty 2 
Helium tank (tk02) Output pressure > secondary regulator setpoint   
Regulators (rg02, rg21) When Pin>=setpoint, output=setpoint 

When Pin<setpoint, output=input 
Regulating high 
Regulating low 
Unknown 

2 
2 
4 

Solenoid valves (sv31, sv32, sv33, sv36, 
sv37) 

When open and pressure>=primary setpoint, flow>0 
When closed, flow=0 

Stuck open 
Stuck closed 
Unknown 

3 
2 
5 

Microswitch (mmsw205x, 303x) PositionReading = sensedPosition Faulty 3 

Pneumatics 

Pressure sensor (mpre102p, 107p) PressureReading = sensedPressure Faulty 2 
LOX tanks (forwardLO2, aftLO2) (see table) Unknown 6 
Vent relief valve ( vr01) When open, flow>0 and temperature in tankMixture(LOX) range 

When closed,  flow=0 and temperature  in ambient range 
Stuck open 
Stuck closed 
Unknown 

2 
1 
4 

Engine inlet valve (pv03) When open,  pressure>=pressurizationIndicator 
When closed,  flowIn = flowOut = 0 

Stuck open 
Stuck closed 

2 
1 

Microswitch (mmsw203x, 213x) PositionReading = sensedPosition Faulty 3 
P. sensors (mpre104p, 201p, 204p, 205p) PressureReading = sensedPressure Faulty 2 
Controller pressure sensors (mpre202p, 212p, 
222p) 

PressureReading = sensedPressure and sensor is not biased Biased 
Faulty 

1 
2 

LOX 

T. sensors (mrtd104t, 201t, 203t, 204t, 205t) TemperatureReading = sensedTemperature Faulty 2 
RP-1 tank (rp1Tank) (see table) Unknown 6 
Vent relief valve (vr06) When open, flow>0 and temperature in tankMixture (RP-1)  

range 
When closed,  flow=0 and temperature in ambient range 

Stuck open 
Stuck closed 
Unknown 

2 
1 
4 

Engine inlet valves (pv07, pv02) When open,  pressure>=pressurizationIndicator 
When closed,  flowIn = flowOut = 0 

Stuck open 
Stuck closed 

2 
1 

Microswitch (mmsw304x,314x, 301x, 311x) PositionReading = sensedPosition Faulty 3 
Pressure sensors (mpre105p, 302p, 304p) PressureReading = sensedPressure Faulty 2 
Controller pressure sensors (mpre301p, 311p, 
321p) 

PressureReading = sensedPressure and sensor is not biased Biased 
Faulty 

1 
2 

RP-1 

T. sensors (mrtd105t, 301t, 302t, 304t) TemperatureReading = sensedTemperature Faulty 2 

Table 3. PITEX RP-1 Tank Model 
 

Sv02 
Flow 

Vr06 
Flow 

Pv07 
Flow 

Predicted Pressure Value 

Zero zero zero Below pressurizationRate, 
 above bleedRate 

Positive zero zero PressurizationRate,  
Above 

ambientPressureLevel 
Zero positive zero VentingRate, 

Below 
ambientPressureLevel 

Zero zero positive BleedRate 
Positive zero positive PressurizationRate 
Positive positive zero Below 

ambientPressureLevel 
Positive positive positive Below 

ambientPressureLevel 
 

Table 2. PITEX LOX Tank Model 
 

Sv03 
Flow 

Vr01 
Flow 

Pv03 
Flow 

Predicted Pressure Value 

zero zero zero HeatingRate 
positive zero zero PressurizationRate 

zero positive zero VentingRate 
zero zero positive BleedRate 

positive zero positive PressurizationRate 
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6. TESTING THE MODEL 
For PITEX, the model has been tested in two stages: in 
isolation and as part of the integrated diagnostic system. (A 
third test of the model, using formal verification tools, has 
been done on a current version of the model but that effort 
is not addressed in this paper.) 
 
To test in the context of the model, the model is loaded into 
Livingstone in a standalone mode. The modeler then inputs 
commands and observations interactively, or through a 

scenario, which correspond to a particular sequence of 
commands and observations. This method of testing is most 
useful in finding the set of component interactions that 
Livingstone predicts for the system. Many unexpected 
interactions can be caught at this stage. However, there are 
some limitations. Often, the modeler simply inputs the 
observations that he feels is relevant to the situation being 
tested, whereas the full set of observations would have 
changed the possibilities that Livingstone reports in a 
diagnosis. In addition, the actual monitors may input 
observations that the modeler didn’t expect. This indicates a 
modeling error, and this class of errors may not be 

Table 4. Diagnosis of PITEX scenarios. 
 

PITEX 
Scenario 

DESCRIPTION 
 
TIME OF 
FAULT 

 
DIAGNOSIS 

 
Rank

1 Open microswitch, MMSW205X, fails on the 
LOX vent/relief solenoid valve, SV31.   

3301.70
and 

7260.8 

Microswitch MMSW205X failed 

SV31 Failed Closed and LOX vent/relief valve VR01 
Failed Open 

3 
 

4 

2 Close microswitch, MMSW213X, fails on the
LOX feed valve, PV03. 

9410.00 Closed microswitch MMSW213X Failed 
 

3 

3 RP-1 feed valve, PV02, fails closed after the
RP-1 bleed has been initiated. 

9359.00 PV02 Stuck Closed 
SV32 Stuck Closed 

 

2 
2 

4 RP-1 vent/relief pneumatic valve, VR06, fails
open. 

9379.00 VR06 Stuck Open 
MPRE103P faulty  

2 
2 

5 Primary RP-1 tank pressurization valve, SV02,
sticks closed. 

9383.86 SV02 Stuck Closed 
SV02 Stuck Closed and SV02.openMicroswitch faulty
SV02.openMicroswitch faulty and MPRE103P faulty 
SV02 unknown fault 

2 
5 
5 
5 
 

6 Primary RP-1 tank pressurization valve, SV02,
sticks open. 

9384.71 SV02 Stuck Open 
SV02.openMicroswitch faulty 
SV02 unknown fault 

3 
3 
5 

7 
Open microswitch, MMSW205X, fails on the
LOX vent/relief solenoid valve, SV31. After
that SV31 fails closed. 

3301.70 SV31 Stuck Closed and SV31.openMicroswitch faulty
VR01 Stuck Closed and SV31.openMicroswitch 

faulty 

5 
5 

8 GHe pressurization system pressure regulators,
RG11 and RG01, both regulate high. 

9000.00 MPRE103P faulty 
RG11 regulates high and  RG01 regulates high 

 

2 
4 

9 Two of the LOX vent line pressure sensors, 
MPRE202P and MPRE212P, fail high. 

0.00 MPRE202P faulty and MPRE212P faulty  
MPRE202P biased and MPRE212P biased  
MPRE202P faulty and MPRE212P biased  
MPRE202P biased and MPRE212P faulty 

4 
4 
4 
4 

10 Two of the LOX vent line pressure sensors,
MPRE202P and MPRE212P, fail low. 

0.00 MPRE202P faulty and MPRE212P faulty  
MPRE202P biased and MPRE212P biased  
MPRE202P faulty and MPRE212P biased  
MPRE202P biased and MPRE212P faulty 

4 
4 
4 
4 
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identified without overall system testing. 
Testing the model as a part of the integrated diagnostic 
system can begin once the model is stable and the integrated 
diagnostic system is implemented. On PITEX, this involves 
generating simulated data, processing these continuous data 
through the monitors, and then through the RTI and on to 
Livingstone. The testing process entails running a fault 
scenario, inspecting the Livingstone diagnosis, investigating 
the reasons for any spurious results, correcting them, and re-
running the scenario. There are a variety of reasons for 
spurious results: model inconsistency, noise issues, RTI 
issues, and simulated dataset not matching expected values. 
Getting the end-to-end system working is an iterative 
process. For instance, the model-monitor teams have to 
work together to establish the thresholds of interest and may 
have to iterate on changes to the model and the monitors in 
order to accommodate all scenarios. Changes include 
adding a new fault mode to a component (e.g. microswitch 
failure), or adding a new variable to track the state of the 
system. 
 
Table 4 shows summary results for all of the PITEX fault 
scenarios. “Time of fault” is the time at which the fault is 
first observable in the physical system. The failure 
candidates diagnosed by Livingstone are shown, along with 
the rank of failure. All candidates are correct and, in almost 
all cases, the lowest ranked candidate corresponds to the 
injected fault. 
 
7. ACCOMPLISHMENTS AND LIMITATIONS 
The process of developing and testing the model has driven 
development of the core tools, such as L2, used with the 
model. One of the fault scenarios studied identified a bug in 
Livingstone, which was corrected. Some problems were 
also identified, and fixed, in the Stanley graphical 
development environment. 
 
Livingstone has brought several advantages to the problem 
of diagnosing the X-34 Main Propulsion System. First, it is 
fast. Because it uses a discrete model, the state space of the 
system is smaller. Also, it provides multiple candidates, 
each of which could contain multiple component faults. As 
shown in the diagnosis table in the previous section, many 
of the fault scenarios considered could have several possible 
explanations. 
 
There are many possible topics for future work in this area. 
First, the scope of the model could be increased. Many 
possible faults are not explicitly modeled, such as tank 
leaks. In addition, the scope could be extended beyond the 
captive carry phase of the flight. Modeling the burn and 
landing phase would highlight many issues in diagnosing 
different operating modes of the vehicle. Finally, scalability 
effects have been investigated only briefly. It would be 
interesting to see how the time required for a diagnosis 
increases with the number of components, or with changes 
in Livingstone parameter settings during runtime. 

 
A current limitation is that the components are all created 
individually, and that they fill specific roles in the model. 
Even similar components, such as solenoid valves, have 
different models depending on their placement in the 
system. It could be useful to make the components more 
generic, so they can be reused in the various parts of this 
model and even in other future models. The creation and 
rigorous testing of generic components would reduce the 
development and testing times for future models. An effort 
investigating the issues with modeling generic components 
is currently in progress. 
 
Finally, more through testing could be done by generating 
large numbers of simulations that vary the type and time of 
the injected faults. Effort is underway to make the 
simulations more adaptable to generate more scenarios; 
thereafter, the model can be tested on large numbers of 
possible fault scenarios. Better measures for false alerts and 
missed alerts of the system can be obtained, which can help 
guide the refinement of the diagnostic system. 
 
8. CONCLUSIONS 
PITEX has demonstrated that qualitative, model-based 
reasoning can be used for diagnosis of a real-world system, 
such as an MPS, with continuous sensor values. Several 
new ideas have been developed to accomplish this, 
including derivative monitors and the current RTI policy. 
Since multiple NASA centers worked on different parts of 
the integrated architecture, PITEX provided an excellent 
opportunity for teamwork and technology exchange. 
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